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Abstract

In order to produce small droplets for icing
cloud simulatlon, hlgh-pressure alr-atomlzlng noz-
zles are used. For certain icing testing appllca-

tlons, medlan drop sizes as small as 5 pm are
needed, which require alr-atomlzing pressures
greater than 3000 kPa. Isentroplc expanslon of
the amblent temperature atomizing alr to atmos-

pherlc pressure can result In alr stream tempera-
tures of -160 :C which results in ice crystals

forming In the cloud. To avoid such low tempera-
tures, it Is necessary to heat the alr and water
to high Initlal temperatures. An icing spray

research program was conducted at AEDC to map the
temperatures below which Ice crystals form. A
soot s11de technique was used to determine the
presence of crystals In the spray.

Introductlon

Refurblshment of the Lewls Altitude Wind
Tunnel (AWT), proposed for completlon In the
early Iggo's, was planned to include the capa-
b111ty of conductlng Iclng research along with
aerodynamics, propulslon and acoustic studies.
Since ice accumulatlon on aircraft and engine sur-
faces can serlously degrade performance, Iclng
tests are an Important aspect of the development
and verlflcatlon tests of aerospace flight sys-
tems. The ultlmate goal of a ground based test
facility Is to effectively simulate Iclng condi-
tlons actually encountered by an aircraft In
flight.

To slmulate natural Iclng clouds In a wind
tunnel, water droplets are Injected into the alr
stream through an alr-atomlzlng nozzle. The slze
of the droplets may be varled by controlling the
atomlzlng alr pressure. An Iclng cloud encounter
Is properly simulated by regulating the amblent
alr temperature and velocity, the water droplet
size and the liquid water content (LWC) In the
alr stream.

To produce small droplets for tclng cloud
slmulation hlgh-pressure alr-atomlzing nozzles
are used. For certaln Iclng test applIcatlons,
such as model scallng, median drop slzes down to
flve microns are needed which may requlre alr-

atomizlng pressures greater than 3000 kPa. Isen-
tropic expanslon of the atomlzlng alr from thls

pressure to atmospheric pressure results In alr
stream temperatures of -160 °C whlch will result
In Ice crystals formlng In the cloud unless the
alr and water are heated to hlgh Inltlal tempera-

tures. An example of the effect of low atomlzlng
alr temperatures Is shown In Fig. I from Ref. I.

Below an alr atomizing temperature of 61.7 °C,
the accreted Ice shape was conslderably reduced
and signlflcantly different. At an air atomlzing
temperature of 21.1 °C no ice accreted at all,
possibly because all the droplets were frozen.
Thls was for one tunnel temperature and atomizlng
pressure. A complete transltlon map was desired.

In early research the degree of supercooling
for single d[oplets has been studied. For exam-
ple, Heverly L supported droplets on wax paper or
on a thermocouple. He showed that droplets could
be supercooled to -33 °C. The smallest droplet
that he used was 50 _m in dlameter. He also
found that the degree of supercooling decreased
as the drop size increased. His data showed that
the spontaneous freezing point was independent of
the cooling rate and pressure.

Dorsh and Hacker 3 studled small drops sup-
ported on platinum or copper plates. They found
that droplets of a given size froze over a range
of temperatures of ±4 °C for drops less than
25 pm, and +I0 °C for drops 50 pm or larger.
B|gg 4 suspended the drops between immisclble flu-
Ids or on a layer of hydrophoblc silicon oil (Drl-
film), He found that the freezing temperature
varied as the logarithm of the dlameter. Data
taken by Bigg show lower freezing temperatures
than those found by researchers uslng solid
surfaces.

Kuhns and Mason 5 photographlcally measured
the freezlng of falllng drops and determined the
droplet slze from the terminal velocity. Their
results agreed closely with the work of Bigg.

It is dlfficult to relate slngle droplet
behavior to the characterlstlcs observed in water
droplet sprays. Previous studles have dealt prl-
marlly wlth Indlvldual droplets that are slowly
cooled (0.3 °C/sec). Thls report addresses the
rapid supercc<)llng of sprays. Droplets wlthin a
spray interact with the continuously changlng tem-
perature and velocity of the atomizing air stream.
The atomizing air stream flows from the nozzle as
an overexpanded jet at low temperatures and high
veloclty. The spray interacts wlth the atomlzing
alr and both streams mlx wlth the ambient air In
a continuously changing envlronment. To deter-
mlne whether freezlng (crystalllzation) will
occur, studies must be conducted using the actual
spray configuratlon.

In an icing cloud the droplets exist in a
liquld state supercooled below their normal freez-
Ing point (0 °C). Lazelle 6 used an air atomizing



spray and collected the droplets on oil slides.
He showed that under some conditions in wind tun-

nel testing, the water droplets crystallized if
the temperature of the atomizing air was suffici-
ently low. Preliminary data taken at the Lewis
Research Center in the Icing Research Tunnel
(IRT) showed that by lowering the nozzle air and

water temperatures from 80 to 35 °C, where drop-
let crystallization might occur, the ice that
formed on the model was quite different from ice
that was formed at normal test conditions, see

Fig. I.

The purpose of these tests was to determine
the effect of: (i) atomizing air temperature and
pressure on the formation of ice crystals,
(ii) ice crystals on ice accretion shapes, and
(ill) tunnel conditions on median drop size and
size d_stributlon. The tests reported herein
were conducted at the Arnold Engineering Develop-

ment Center (AEDC), Air Force Systems Command
(AFSC). The user/sponsor was NASA Lewis. Tests
were conducted at a tunnel Math number of 0.3 and

tunnel temperatures of -13 and -8 °C. The liquid
water content was approximately 0.6 gm/m 3.

Facillty

The tests were conducted in the single noz-

zle icing spray facillty shown in Fig. 2. The
alr flow rate is measured using a critlcal flow

venturi and water droplets are sprayed Into the
prlmary air stream through a single two-phase ato-
mizing spray nozzle located in the plenum chamber
upstream of the bellmouth. The bellmouth termi-
nates in a 30.5 cm diameter duct that directed

the free jet of conditioned air into the 0.91 m
dlameter test section. A secondary air system

supplles air into the test section to prevent
recirculation of the water droplets into the

expansion. The dlstance from the nozzle to the
measuring station is 4.42 m.

During the test, the drop slze distrlbution
was determined wlth the Laser Fiber Optic System
(FOS). The FOS uses a single laser beam and meas-
ures the shadow of the particle with a lens system
and row of photomultlplier tubes. The system

assigns each droplet to one of thirty bins, each
representlng a different droplet size. Each bin
width is 2.778 _m In dlameter and slzes from 5 to

IO0 pm are included. The data is automatically
recorded and reduced to produce volume median drop

sizes and drop size dlstributions. The system
averages from 5000 to 15 000 drops per reading.

A "soot slide" technique as described by
Skldmore and Pavla 7 was used to indicate the pres-

ence of crystals. The impressions of the droplets
In the soot coatlng are indicative of the state,
liquid or crystal, of the water droplets. The
technique was chosen because of its simpliclty
and economy of operatlon. A slide could be

exposed, withdrawn, examined, and a new slide
inserted In approximately 15 mln without shuttlng
down the tunnel. In this technique, small plexl-

glass slides were coated with kerosene lamp soot
and then briefly exposed to the air stream at the
measurement statlon. The slide was 0.635 cm wlde

by 3.81 cm long and 0.32 cm thick. The slide was
inserted into a 2.54-cm dlameter probe and exposed

by a rotating slot shutter, Fig. 3. A copper cap
wlth a 0.32 by 2.54 cm slot was rotated rapidly

by a hand crank to expose the soot sllde. The

soot slide holder could be removed from the probe
without removal of the mechanism from the test
cell or shut down of the test cell. The sampling
mechanism was purged with
hot air between data points to prevent excessive
ice buildup on the sampling cap. A picture of the
disassembled soot slide probe is shown in Fig. 4.

The NASA Lewis standard icing spray nozzle
is shown in Fig. 5. This nozzle was selected for

use in the AWT because it has been extensively
calibrated and is currently used in the Lewis
Icing Research Tunnel. Since the atomizing air
was introduced at a pressure above the choked con-
dition of the nozzle, the water jet was introduced
to an expanding supersonic air stream. The
resulting atomizing air stream temperature was

well below the homogeneous freezing point of the
spray for a short period of time until the ambi-
ent tunnel air was entrained into the stream.

Results

The effect of atomizing air temperature on
droplet crystallization was evaluated by setting
the atomizlng alr pressure between 300 and 830 kPa
and lowering the atomlzing air temperature from
If5 to 15 °C. Tests were conducted at tunnel tem-

peratures of -13 and -8 °C. Most of the tests
were conducted at a spray nozzle water tempera-
ture of 60 °C. The tunnel Math number was 0.3

and the llquld water content (LWC) was 0.6 gm/m 3.
At a LWC of 1.2 the shutter on the probe could
not be manually moved fast enough and most of the
soot was washed off the slide.

The tunnel and spray conditlons were set and
a soot sllde was exposed and examined under the
microscope for the presence of crystals. In most
tests a second slide was exposed for verification

because the probe was operated manually and sample
quallty varied. If most of the droplets were
observed to be crystallized on a slide, the point
was marked below the transltion. Then the air

temperature was raised and another data point was

taken. The process was repeated at varlous pres-
sures until a transitlon llne could be established.

Selectlve photos of the soot slides will be dis-
cussed later.

The stability map for droplet crystallizatlon

is shown In Fig. 6. The lines are drawn through
the transltion where crystals were predominant on
the slide. For a given ambient air temperature
as the air pressure is increased the atomizing
air temperature must also be increased to prevent
crystallization. Lazelle's 6 data at -33 and
-20 °C are shown as short dashed lines. Lazelle

had a "rule of thumb" shown by the solid line
that the nozzle air temperature in degrees centl-
grade should be greater than twice the nozzle alr
pressure In pslg. The -13 and -8 °C lines are

shown extended above lO0 °C indicating that data
was taken at conditions where the air temperature
had to be heated above the boiling polnt of water
to prevent crystallization after expansion of the
atomizing air.

The drop size is shown as a subscale on the
figure. The median drop slze as measured by the
FOS instrument dld not change, within experimen-
tal deviation, with changes in air temperature.
Even on crystalllzation the FOS system did not

indicate changes in drop size. In mapping out



thetwocurves,104sootslidesweretakenand
127FOSlaserreadingswererecorded.

Theeffect of atomizingair pressureondrop
sizedistribution is seen from the soot slide

impressions, shown in Fig. 7. At these condi-
tions no crystals were present. Because the
probe was manually activated, the time of expo-
sure was not constant. As the pressure is
increased the drop size is significantly reduced.

These photos were produced by placing three slides
directly on a 35 mm photoenlarger and exposing a
20 by 25 cm (8 by lO in.> print. The 0.635 wide
slide is magnified about ten times. The round
dark circles are craters in the soot where drop-
lets have hit. When the droplets hit, they flat-

ten and leave an impression larger than the size
of the drop. Skidmore and Pavia / give a calibra-
tion of soot slide Image size versus drop size;
their calibration is presented in Fig. 8. The

ratio of drop size diameter to impression diame-
ter is a strong function of impact velocity.
Above 200 m/see droplet breakup may occur on

impact. When this occurs multiple small images
may appear. All the tests reported here were
made with a Mach number of 0.3 (lO0 m/s). At

this velocity, Fig. 8 shows that the soot-sllde
image is 5 times larger than the spherical drop
diameter.

The dropslze dlstribution as determlned from
the laser FOS system is shown in Flg. 9. The dis-
tribution peaks at lO pm for the three sprays. As
the atomizing air pressure decreases the number of

large drops increases, which increases the volume
medlan drop size. In this work no attempt was
made to determine the volume median drop sizes
from the soot slides to compare with the laser FOS

measurements. The largest drop size that the
laser FOS system can measure is 90 pm so that some

of the larger drops that might be present at low
pressure could not be measured.

The effect of atomizing air temperature on

the degree of crystallization is seen from the
soot slide images shown on Fig. IO. As the tem-
perature Is reduced streakllnes appear showing
the motion of the frozen particles in the soot.
The streaklines might be created by frozen ice
balls rolling in the soot. The lines are present
on both sides of the stagnation llne of the slide.

On Fig. IO(b) only a few streaklines are present,
whereas on Fig. lO(c) the slide Is covered.
Therefore it was concluded that the crystalliza-

tion temperature was midway between the two condl-
tions at 63 °C.

By looking at the slides under a microscope
further magnification is obtained. The overall
magnification is lO0 for Figs. II and 12.
Figure If(a) shows that the unfrozen droplets

produce circular images on Impact. As the tunnel
temperature is lowered, the freezing droplets
leave an irregular impression on the soot slide.
It is difficult to determine whether the smaller

droplets In Fig. If(b) are frozen. Deflnlte crys-
talline dendrites are present in Flg. 11(b) indl-

catlng the condltlon of crystals belng present.

One question is where does the phase transi-
tion take place: in the air or on the soot slide?
There is no doubt that the soot particles on the

slide could act as nucleatlon sites If condltlons

are right. However, freezing would have to occur

In less than 0.2 Ms to prevent a liquid impact
image from forming. This time is based on the

droplet diameter over the velocity of the drop.
Observation of single droplets suggests that
freezing cannot occur this quickly. It will also
be shown that the ice accreted on a model is sig-

nificantly different when an icing test is run

with atomizing air temperature below the crystal-
lization limit shown in Fig. 6 and that it is
important to stay above this limlt for proper sim-
ulatlon of a supercooled cloud. Therefore one
concludes that crystallization has occured before

impact with the slide. An additional considera-
tion Is that if nucleation was triggered by the

soot, transition would be at a higher atomization
air temperature than a soot free surface. There-
fore the results of this report would be a con-
servative estimate of transition.

The determination of whether crystals are

present is subjective. Figure 12(a) shows a
slide taken at conditions for which crystalliza-
tion would not be expected. It is seen that the

larger droplets contains some irregularity, sug-
gesting that crystals have formed, around the
outer edge, but the small ones appear round, sug-

gesting they are not frozen. Even under further
magnification the smaller images are round. At
the hlgher atomizing air pressure of 820 kPa crys-
tallization was present even when the atomizing
air temperature was above the boiling point of
water at llO °C, Fig. 12(b). The drop slze as

measured by the laser FOS system did not show any
change in size when the atomizing air temperature
was raised above the boiling point of water.

A sequence of tests was made to determine if
the ambient air temperature affected the drop
size. Extensive dropslze data have been obtained

at room temperature conditions and it was impor-
tant to determine its applicabillty at icing
temperatures. The atomizing air was heated to
control the density and mass flowrate at a glven

pressure. The data is shown in Table I. The data
Is ordered in increasing air pressure. Four noz-
zle condltions were tested. Within the scatter of
the data there was no effect of tunnel

temperature.

In an attempt to relate the stability curves
to the static temperature of the atomlzing air

jet, it was assumed that the atomizing air expands
to the tunnel pressure Isentroplcally. Using the
Isentropic expansion relationship:

y-I/y

Po (1)

and plotting lines of constant static temperature
on the stability map, Flg. 13, one observes that
the lines have very nearly the same slope as the
experimental curves. As the atomlzing air mixes
with the amblent tunnel alr, the droplets are

exposed to a varying air temperature. The actual
temperature history Is complicated, and the drop-
let may possibly travel through shocks whlch form
at the nozzle exit. Actual shock and flow calcu-

latlons were attemped with a two dimensional Euler
code but the calculations were unstable and the

solutlon diverged. In addition the effect of



dropletsonshockconditionswerenotknown.Exam-
inationof Fig. 13showsthat thecrystallization
temperatureis stronglyrelatedto the initial
sink temperatureof theatomizingair.

Flgure14is the relationshipbetweenthe
ambienttemperatureandthe static temperatureof
the atomizingair after expansionwhichleadsto
crystallization. It wasobtainedbycross-
plotting the four nearlycoincidentlines of
Fig. 13of theambienttemperatureandthecorre-
spondingatomizationstagnationtemperature.At
anambienttemperatureof -8 °Can initial static
temperatureof -75 °Ccouldbe tolerated. The
actualmixingprocessis complicated.At a given
atomizingpressure,asthe ambienttemperatureis
reducedthe Initial atomizingair temperature
mustbe increasedto preventcrystalsfrom
forming. Alsoshownon this figure are the ice
accretlontest pointsfor the ice shapedataof
Fig. 15.

Thestabillzatlon curveswereestabllshedon
tests that wereconductedat a Inltlal watertem-
peratureof 60°C. A limitednumberof soot
sllde tests weremadeat a watertemperatureof
38°Cwhichshowedthat thecrystaIllzatlonpoint
wasnearlythe sameandthereforenota strong
functionof the initial watertemperature.

Thechangein ice shapeona 2.54cmdiame-
ter pipewith the presenceof crystals In the
sprayIs shownin Flg. 15. At the loweratomiz-
ingair temperaturewherethedropletshavecrys-
tallized, Fig. 15(c), the hornshavenot formed
andthecatchis conslderablyreduced.Good
agreementwlth the stability curveshownon
Flg. 14is obtained.Flgure15Indlcatesthat
thepresenceof crystals In thespraydoess%gnlf-
icantly affect the ice shapeformed.Thedataof
Fig. 15areverysimllar to thealrfoll dataof
Fig. l, indicatinga decreasein Ice accretlonat
thetransition temperature.

Conclusions

The results of this study validate the con-
cern over droplet crystallization, deflne the

spray nozzle operating condltions at whlch drop-
let crystalllzatlon occurs, and show that the

resultant ice shapes on test models vary slgnifl-
cantly If the droplets are crystallized. At high
atomizing pressures, atomizing alr temperatures
above the boiling point of water are requlred to

prevent crystalllzatlon. The stability curve is
related to the static temperature curves of the

atomizing air jet. Within the scatter of the
data there was no effect of tunnel temperature on
medlan drop slze. Even if the soot produced ini-
tial nucleation, the data of this report would

represent a conservative estimate of the transi-
tion temperature. The data will be beneficial in

the design of water droplet injection systems to
effectively simulate iclng clouds in wind tunnel
testing.
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TABLE I. - EFFECT OF TUNNEL TEMPERATURE ON DROP SIZE

[Air atomlzing temperature : 82.9 °C

water temperature = 63 °C.]

Tunnel

temperature,
°C

20.50
-1.61
-2.17
-6.89
-7.05

20.
--7.

20.
--2.

-6.

Atomizing air

pressure,
kPa

310.
311.

Nater
pressure,

kPa

439.
441.

Drop size,

_m

24.

21.2 20

55
11

50
78
94

448.

453.

448.

541 .

546.

543.

538.
538.

1503.

1503.

13.0 12.3
12.5 12.4
12.6 11.7
12.4 12.4
12.6 11.7

29.6 30.2

27.6 30.5

830.

828.

828.

856.

841

848

7.6 7.5
7.4 7.0
7.4 7.7

ATOMIZINGAIR AND WATER
SPRAYTEMPERATURE,°C

82.2 (NORMALOPERATION)

71.1
67.7

i-_ 37.8

NO ICEAT 21.1OF

I

L ICESHAPES

FIGUREI. - EFFECTOF SPRAYTEMPERATUREON ICE ACCRETION,REF. I.

SPRAYPRESSURE:PAIR = 408 KPA_ PH20= 5q4 KPA;DVM, 15 pM;
LWC, 0.8 G/M3;AIR TEMPERATURE,-12.20C; AIRSPEED,92.6M/SEC.
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FIGURE 6. - STABILITY MAP FOR THE OCCURRENCEOF DROPLET
CRYSTALLIZATION.
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1000 IJM

(A) ATOMIZING AIR TEMPERATURE, 71 °C.

1000 IaM

(B) ATOMIZING AIR TEMPERATURE, 65.5 °C.

(C) ATOMIZING AIR TEMPERATURE, 60 °C.

FIGURE 10. EFFECT OF ATOMIZING AIR TEMPERATURE ON SOOT SLIDE IMAGES. TUNNEL AMBIENI TEMPERATURE - 8°C,

ATOMIZING AIR PRESSURE 650 KPA, DROPLET MEDIAN DIAMETER - 8.7 _M
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(A) IUNNEL AMBIENT TEMPERATURE - 8 °C.

(B) TUNNEL AMBIENT TEMPERATURE - 13 °C.

FIGURE 11 - EFFECT OF TUNNEL TEMPERATURE ON SOOT SLIDE IMAGES ATOMIZ]NG AIR CONDITIONS 646 KPA, 82 °C,
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(A) ATOMIZING AIR CONDITIONS qSO KPA, 82 OC, DROPLET SIZE 12.4 _M.

(B) ATOMIZING AIR CONDITIONS 820 KPA, 110 Oc, DROPLET SIZE 7.5 pM.

FIGURE 12. - SOOT SLIDE IMAGES AT AN AMBIENT TUNNEL TEMPERATURE OF - 13 °C.
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FIGURE 13. - ISENTROPIC EXPANSION LINES OF CONSTANT

STATIC TEMPERATURE TS, COMPARISON WITH DATA.
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(A) °C.

(B) ATOMIZING AIR TEMPERATURE 71 °C, EXPANDS TO -SO °C.

(C) ATOMIZING AIR TEMPERATURE 38 °C, EXPANDS TO -70 °C.

FIGURE 15. - EFFECT OF ATOMIZING AIR TEMPERATI!RE (CRYSTAL-

LIZATION) ON ICE SHAPE. 2.54 CM DIAMETER ROD. TUNNEL

AMBIENT TEMPERATURE -90C, ATOMIZING AIR PRESSURE 450 KPA,

INITIAL WATER TEMPERATURE 38 °C. LWC 0.6 G/M 3, TIME

6.0 MINUTES.
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